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Relaxation dynamics in dense binary colloidal mixtures: Brownian dynamics simulations
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Brownian dynamics simulations have been carried out on a binary colloidal mixture of particles of two
different diameters interacting via a Derjaguin-Landau-Verway-Overbeek potential. As the screening length is
increased a transition from liquid to crystal~at a volume fractionf50.2) or a glassy state~at f50.3) is
observed. Below a certain effective temperatureT!, the temporal evolution of the mean-squared displacements
shows a marked subdiffusive behavior at intermediate and long times. The supercooled liquid withf50.3
shows a staircase profile indicating strongly cooperative jump motion which is corroborated by the behavior of
van Hove self-correlation functions and the non-Gaussian parameter. The van Hove distinct correlation func-
tion, in theb relaxation regime, shows a factorization property in accordance with the mode-coupling theory
predictions. The most interesting result is the observation of cooperative hop and subsequent hop-back motion
at temperatures close to the glass transition.@S1063-651X~98!10401-4#

PACS number~s!: 82.70.Dd, 61.20.Ja, 05.40.1j, 64.70.Dv
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I. INTRODUCTION

Charge-stabilized aqueous colloidal suspensions of p
styrene particles~polyballs! and sterically stabilized nearl
hard-sphere colloids of polymethyl methacrylate~PMMA!
particles are considered to be model condensed matter
tems to study a rich variety of cooperative behavior in eq
librium and nonequilibrium conditions because their int
particle interactions can be easily controlled. Liqu
crystalline, and even glassy states are seen in these sys
@1# under suitable experimental conditions. One-compon
polyball systems show either a body-centered cubic~bcc!
phase at low volume fractionsf or a face-centered cubi
phase at highf. The glassy state in these systems atf
;0.2 was revealed by small-angle neutron scattering m
surements@2# of structure factors. The freezing of monodi
perse PMMA suspensions from a liquid to an equilibriu
crystalline phase or a metastable glassy state has been
ied extensively@3# as a function off @4#. In binary colloids,
the structural behavior is much richer. Several compou
crystalline structures likeAB2, AB4, and AB13 have been
identified in concentrated polyball suspensions@5# as well as
in PMMA colloids @6#. Existence of glassy states in bina
mixtures of charged colloids has been inferred from the m
surements of shear modulus@7# and static structure factor
by light scattering@8#, diffusing wave spectroscopy exper
ments@9#, and computer simulations@10#.

The use of mode-coupling theories~MCT! has achieved a
significant advancement in understanding the microsco
dynamical behavior of supercooled liquids near ‘‘glass tr
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sition’’ ~GT!. Its idealized version@11#, which was shown to
hold good for colloidal suspensions too@12#, explicitly in-
corporates the delayed nonlinear coupling between den
fluctuations and projects the following picture for partic
dynamics in dense liquids. The motion of a particle is co
tinuously hindered by the cages formed by its surround
particles. The fact that a caged particle can be consider
member of another neighboring cage results in a coopera
movement of a large number of particles. With cooling~or
increasing densityf), this coupling and hence the structur
relaxation time increases and ultimately diverges at a crit
temperatureTc ~or a critical densityfc). The static proper-
ties vary smoothly acrossTc ~or fc) but the dynamic prop-
erties change abruptly from an ergodic~fluidlike! to a non-
ergodic ~solidlike! behavior corresponding to a comple
arrest of concentration fluctuations of all length scales. N
Tc ~or fc), the idealized MCT predicts the onset of tw
distinct relaxation processes beyond microscopic relaxa
time t0, namely, a long-time a relaxation and an
intermediate-timeb relaxation. Althoughb relaxation per-
sists in the glassy states,a relaxation freezes out, giving ris
to a sharp liquid-glass transition. This sort of a sharp tran
tion is never seen in experiments and simulations becaus
the presence of phonon activated transport~hopping! pro-
cesses which restorea relaxation in glass and hence mak
the crossover from liquid to glass smooth. An extended v
sion of MCT @13# incorporates the activated motion and t
light scattering data@14# for both molecular glass Salol an
the ionic glass Ca0.4K0.6(NO3)1.4 are seen to agree well with
its predictions. However, the dielectric susceptibility me
surements@15# of Salol do not match well with the above.

Computer simulations are ideal to study the static a
dynamic properties of model systems. The molecular dyna
ics ~MD! simulations have been extensively used to study
dynamics of binary supercooled liquids as it approac
glass transition, for example, for particles interacting v
Lennard-Jones~LJ! @16#, purely repulsiver 212 @17#, and
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57 909RELAXATION DYNAMICS IN DENSE BINARY . . .
size-corrected Yukawa potential@18#. Liquid, crystalline,
and glassy states were observed in the MD simulation
binary polyball mixtures@18#. The fluid molecules, being
much smaller than the polyballs, provide a uniform visco
medium in which the motion of the polyballs is overdampe
Thus the simulation technique appropriate to polyball s
pensions is Brownian dynamics~BD! @19#. The influence of
the Newtonian~MD! and Brownian~BD! dynamics on the
dynamical correlations for liquid to GT in charge
polydisperse colloids has been investigated in a previ
simulation study@10#. It was shown that though the long
time relaxation scenarios of density correlation functions
both the cases are similar, they differ in the short and in
mediate times.

The aim of the present paper is to understand the s
dynamics of a charge-stabilized dense colloidal liquid as
‘‘cooled’’ ~defined later! and the relevance of activated m
tion at effective low temperatures. To this end, we report
BD simulation results on the dynamical parameters as a
nary dense liquid is cooled by reducing the impurity i
concentrationni in steps to a crystal atf50.2 or a meta-
stable glass atf50.3. The dynamical quantities that w
have probed are the mean-squared displacements~MSD’s!,
time-dependent diffusion constantsD(t), self partGa

s (r ,t),
and distinct partGa

d(r ,t) of the van Hove correlation func
tion and non-Gaussian parameteraa(t). Detailed studies on
the static parameters@20# and the calculations of translation
and bond-orientational correlation functions@21# that supple-
ment our conclusions are reported elsewhere. In order to
carefully into the presence of activated hops and coopera
ness in particle motion, we have also probed the part
displacements directly. The paper is set out as follows
Sec. II we describe the model and details of the simulat
Section III is devoted to the results and finally, Sec. IV co
tains the summary of our findings and conclusions.

II. MODEL AND DETAILS OF SIMULATION

Since the model and our simulation procedure have
ready been detailed elsewhere@20#, we will briefly touch
upon the main points here. We consider a binary polyb
mixture of N15N25216 particles with the lighter particle
having a radiusa15545 Å, a valenceZ15300 and the
heavier particles havinga251100 Å andZ25600. It is iden-
tical to the experimental system of Lindsay and Chaikin@7#
as well as the one used in the MD simulation of Rosenb
et al. @18#. The interparticle interaction is modeled via
purely repulsive, size-corrected Derjaguin-Landau-Verw
Overbeek~DLVO! potential@1#

Ui j ~r !5
ZiZje

2

e S ekai

11kai
D S ekaj

11kaj
De2kr

r
, ~1!

wheree is the dielectric constant of water~equal to 78! at
temperatureT ~equal to 298 K!. For a binary suspension, th
inverse Debye-Hu¨ckel screening lengthk is given by
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wherenp and ni are the total number densities of particl
and monovalent impurity ions~i.e., zi51), respectively.
Here, Z̄5xZ11(12x)Z2, with the composition variablex
5N1 /N (50.5). The system can be suitably characteriz
by its total volume fraction

f5
4

3
pnp@xa1

31~12x!a2
3# ~3!

and reduced temperatureT!, given by

1

T!
5

U0

kBT
5

~ Z̄e!2

ekBT S ek ā

11k ā
D 2

e2kas

as
, ~4!

whereU0 is the energy scale. Hereā is the mean radius and
as5np

21/3 is the average interparticle separation. The parti
positions are updated at every time stepdt according to the
finite-difference BD algorithm due to Ermak and Yeh@19#.
The random part and the inaccuracies involved in the ca
lation of the systematic part of force in the algorithm m
lead to spurious movements of the center of mass of
system as a whole. This is corrected by holding the cente
mass fixed at each position updating. The cutoff distancer c
for the potential is chosen to be equal to 2as or 6k21,
whichever is greater, to ensure thatUi j (r c);0.001kBT. We
have used the cubic periodic boundary conditions and
natural consequence—-the minimum image convent
@22#—to minimize the surface effects.

As shown in Table I, at eachf, an initial bcc lattice is
melted into a liquid with a high impurity concentrationni

55npZ̄ and this liquid is then sequentially ‘‘cooled’’ in 11
more steps withni at every step being half of the previou
one, except for the last step whereni50. The runs in the
sequence are named asX0, Xa, Xb, . . . ,Xk for f50.2 and
G0, Ga, Gb, . . . ,Gk for f50.3. With this method of cool-
ing, called ‘‘slow quench,’’ the effective temperatureT! of
the system is brought down from;1 to ;0.03. At eachT!,
monitoring total and partial pair distribution function
~PDF’s! over the entire equilibration run ofNeq time steps
(;23106dt) together with a steady value~rms deviation
being less than or equal to 0.15%! of the internal energy pe
particleE5(1/NkBT)( j Þ iUi j (r ) ensure a proper equilibra
tion. Next NPR (;33106dt) steps ~production run! ~see
Table I! are used for evaluating the static@20# and dynamic
quantities reported here, as well as the density and the b
orientational correlation functions@21#.

The characteristics of the BD runs forf50.2 and 0.3 are
given in Table I. We note that runsXl andXm are indepen-
dent runs and are not similar to the other slow-quench ru
If the particles are put on a bcc lattice irrespective of th
species and then simulated with parameters the same a
Xk ~i.e., f50.2 andni50) the final stateXl is a bcc with
improper sublattice ordering. By contrast, if an initial b
composed of two interpenetrating simple cubic sublatti
made of either kind of particles is simulated with paramet
as above, the final stateXm is a substitutionally ordered bcc
By comparing the internal energyE and the PDF, the posi
tion and type of the immediate eight neighbors of each p
ticle and translational and bond-orientational orders@21# of
runs Xk, Xl, and Xm, we conclude@23# that the resulting
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TABLE I. Cooling history of different runs. The parameters are explained in the text.

Run Neq NPR ni /(npZ̄) T! kas E Initial Final

f50.2, time stepdt5731026 sec
X0 200000 199000 5 0.9098 9.877 5.28 bcc liqui
Xa 200000 199000 5/2 0.2749 7.544 14.30 X0 liquid
Xb 200000 199000 5/4 0.1216 6.048 31.82 Xa liquid
Xc 249000 199000 5/8 0.0722 5.140 55.88 Xb liquid
Xd 200000 199000 5/16 0.0530 4.620 77.71 Xc liquid
Xe 200000 199000 5/32 0.0446 4.336 94.49 Xd liquid
X f 200000 199000 5/64 0.0407 4.187 104.96 Xe liquid
Xg 200000 199000 5/124 0.0388 4.110 110.89 X f liquid
Xh 200000 199000 5/256 0.0378 4.071 114.18 Xg liquid
Xi 200000 199000 5/512 0.0374 4.052 119.67 Xh bcc
X j 200000 199000 5/1024 0.0372 4.042 117.85 Xi bcc
Xk 219300 199000 0 0.0369 4.032 118.67 X j bcc
Xl 200000 199000 0 0.0369 4.032 118.45 bcc bcc
Xm 200000 199000 0 0.0369 4.032 110.74 bcc bcc

f50.3, time stepdt5331026 sec
G0 350000 399000 5 0.5055 10.570 8.56 bcc liqu
Ga 399000 399000 5/2 0.1796 8.073 21.37 G0 liquid
Gb 350000 399000 5/4 0.0876 6.472 44.22 Ga liquid
Gc 350000 399000 5/8 0.0550 5.500 73.20 Gb liquid
Gd 350000 399000 5/16 0.0416 4.943 100.66 Gc liquid
Ge 437230 399000 5/32 0.0356 4.639 119.18 Gd liquid
G f 350000 399000 5/64 0.0327 4.480 131.25 Ge liquid
Gg 350000 798000 5/128 0.0313 4.398 137.92 G f glass
Gh 542150 399000 5/256 0.0307 4.356 141.41 Gg glass
Gi 350000 399000 5/512 0.0303 4.335 143.14 Gh glass
G j 350000 399000 5/1024 0.0302 4.325 144.12 Gi glass
Gk 359600 399000 0 0.0300 4.314 145.12 G j glass
i-
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final stateXk of our slow-quench simulation is a compos
tionally disordered bcc, similar toXl. We believe that this is
a limitation due to finite size and finite time of our simulatio
and probably also due to a high energy barrier; otherwise
system would have reached its proper equilibrium state gi
by run Xm.

III. RESULTS

A. Mean-squared displacement

We have calculated the total mean-squared displacem
defined by

Š^@DrW~ t !#2&N‹Nc
5

1

Nc
(

t051

Nc F 1

N(
i 51

N

$rW i~ t1t0!2rW i~ t0!%2G
~5!

and also the partial MSDŠ^@DrWa(t)#2&Na
‹Nc

for both types of

particles (a51 or 2), defined similarly as in Eq.~5!, where
rW i(t) is the position of the particlei at timet. The signal-to-
noise ratio of the MSD is increased by averaging over a
of typically Nc550 initial conditions$t0% chosen at different
times in the same run. These initial configurations were se
rated in time>td (;1023 sec!. In liquid statetd is the time
e
n

nt

et

a-

taken for a particle to diffuse an interparticle separationas .
The time-dependent diffusion constant and its asympt
value are given by@24#

D~ t !5
1

6t
Š^@DrW~ t !#2&N‹Nc

~6!

and

D`5 lim
t→`

D~ t !. ~7!

The partialDa(t) andDa
` are defined similarly. The tempo

ral evolutions of the partial MSD are shown in Figs. 1–4
log-log plots for various temperatures while cooling the s
tem towards a crystal forf50.2 and a glass forf50.3. The
corresponding results for partialD(t) are given in Figs. 5–8,
also in log-log plots. The time dependences of the par
MSD for the small as well as the large particles are simil
The total MSD and the totalD(t) show the time depen
dences which are concentration weighted average of the
tial ones and hence are not shown here.

The power-law dependence of MSD@or D(t)# can be ex-
pressed asŠ^@DrW(t)#2&N‹Nc

}tm @or D(t)}tm21#, where the

exponentm is 1 for Fickian diffusion and less than 1 fo
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57 911RELAXATION DYNAMICS IN DENSE BINARY . . .
subdiffusion. The log-log plot is a convenient way to pres
the data since a MSD with a power-law dependence sho
show up as a straight line with slopem in this plot and hence
the distinction between the diffusive and the subdiffus
regimes should be quite apparent@20,25#. Figure 9 shows the
local slope parameterm as a function of time for~a! f
50.2 and~b! f50.3, as obtained from the total MSD. Th
curves are smoothened using a wavelet filtering techni
@26#. There are considerable fluctuations in the value ofm
close to zero. The long-time values ofm ~Fig. 9! indicate that
the dynamics is considerably diffusive (m'1) at high tem-
peratures, whereas the particles are localized or trappedm
'0) in crystal ~run Xk) or glassy states~run Gk) at the
lowest temperatures. At high and intermediate temperat
(T!.0.0530 forf50.2 andT!.0.0550 forf50.3 in Table

FIG. 1. The lighter sublattice mean-squared displaceme

Š^@DrW1(t)#2&N1
‹Nc

/as
2 versus time~in sec! in a log-log plot for

f50.2 runs listed in Table I.

FIG. 2. Same as in Fig. 1, but for the heavier sublatt

Š^DrW2(t)#2&N2
‹Nc

/as
2 .
t
ld

e

(

es

I!, the general nature of MSD~Figs. 1–4! and D(t) ~Figs.
5–8! follow three distinct stages. The initial stage can
associated with the cage diffusion and hasm'1. The choice
of dt does not allow us to follow this regime for over
sufficient time in our simulations. Following this, there is a
intermediate ‘‘subdiffusive’’ regime (m,1) and a long-time
diffusive behavior (m'1). Figures 1–4 clearly show tha
the linear temporal dependence of MSD and hence appr
mating the long-time diffusion constant from the asympto
slope of MSD is valid for runsX0 –Xc with f50.2 and runs
G0 –Gb with f50.3. As the temperature is lowered mo
than that corresponding to the above runs, the span of
subdiffusive regime increases successively to cover the
tire simulation time, so that the asymptotic values of t
diffusion constants are not reached. We note that the sh

ts FIG. 3. The log-log plot ofŠ^@DrW1(t)#2&N1
‹Nc

/as
2 versus time

~in sec! for f50.3 runs listed in Table I.

FIG. 4. The log-log plot ofŠ^@DrW2(t)#2&N2
‹Nc

/as
2 versus time

~in sec! for f50.3 runs listed in Table I.
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912 57SUBRATA SANYAL AND AJAY K. SOOD
time profiles of the MSD due to a cage diffusion followed
a subdiffusion are very similar to those obtained in a rec
experiment@27# and simulation@28#. The subdiffusive be-
havior has been very recently calculated theoretically@29#
and has been noted in the MD simulations of one-compon
and binaryr 212 soft-sphere systems@30,31#, monodisperse
Yukawa fluid @24,32#, LJ systems@33#, and also in the
nearest-neighbor-interacting lattice gas@34#. It has been sug-
gested that the motion of a particle in the background of
inhomogeneous medium may lead to the subdiffusion.

An immediate distinction between the nature of MSD
whether a liquid is cooled towards a crystalline or a gla
state~as apparent from the curves belowXc in Figs. 1 and 2
and belowGb in Figs. 3 and 4! is that the MSD’s in thef
50.3 case alone show a ‘‘staircase’’ behavior@which ap-

FIG. 5. The lighter particleD1(t)/as
2 ~in sec21) versus time~in

sec! in a log-log plot forf50.2 corresponding to the MSD dat
shown in Fig. 1.

FIG. 6. The heavier particleD2(t)/as
2 ~in sec21) versus time~in

sec! in a log-log plot forf50.2 corresponding to the MSD dat
shown in Fig. 2.
t

nt

n

,
y

pears as humps in the correspondingD(t) curves#. This in-
dicates that in the supercooled liquid or glassy regime
particle, in its course of movement, repeatedly gets arre
for a period of time in a ‘‘cage’’ formed by its neighbors an
subsequently hops to other cages. The fact that the step
behavior is seen in the statistically averaged quantity M
points out that the hoppings from one cage to another
taking place cooperatively. The underlying dynamics b
come extremely slow as shown by the small MSD at th
low temperature states and thus the various initial configu
tions involved in the averaging of MSD are not independ
of each other. Hence cooperative hops of the order of
interparticle separationas by a few particles will show up as
steps in these plots even after averaging over the par
numbers as well as the configurations. The staircase beha
is seen even after averaging of MSD over 100 initial co

FIG. 7. Same as in Fig. 5, but forf50.3.

FIG. 8. Same as in Fig. 6, but forf50.3. The data are shown in
two panels for clarity.
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57 913RELAXATION DYNAMICS IN DENSE BINARY . . .
figurations in the stateGg which has been run for twice th
time steps as compared to others~see Table I!. We do realize
that this averaging over initial configuration may not be s
ficient. If we perform averaging over totally independen
prepared initial conditions~which will be prohibitively ex-
pensive because the state at a given temperature is pre
by successive cooling and equilibration as shown in Table!,
it is very likely that the steps can be smoothened out. We
not in a position to perform such runs.~In fact, we are not
aware of such computer runs in the available literature
supercooled states!. To this end, we have calculated the a
erage deviationxa(t) (a51 or 2) of individual particle
MSD’s from their corresponding average MSD in the fo
lowing manner:

xa~ t !5^Šu^@DrWa~ t !#2&Na
2@DrWa~ t !#2u‹Na

&Nc
. ~8!

In Fig. 10, we have replotted the heavier sublattice M
for two supercooled liquid states,Gd andGg, for which the
staircase behavior is seen in Figs. 3 and 4. The average
viation x2(t) is reported in Fig. 10 as error bars at seve
different times~equally separated on logarithmic scale!. For
both of these cases averaging is performed over a set oNc
different initial configurations chosen in the same run,
explained before. We found that the steps in the MSD
within the limits set by the error bars. The averaging of MS
over several sets of initial configurations separated in time
the same run itself, as explained in Eq.~5!, has been widely
used in literature for MSD’s in liquids as well as in glassy
crystalline states. This procedure works well for liquids~or
more generally, for ergodic systems!. On the other hand
glass or crystal is a nonergodic system and particles in th
states are confined in their positions over a long period
time, practically infinite compared to the total simulatio
runs achievable with the present day computers and henc
not explore the entire phase space. Even in such cases
averaging process generates smoother MSD~though not sig-

FIG. 9. The temporal dependence of the local slope parametm
is shown in semilogarithmic plots for~a! f50.2 and~b! f50.3,

obtained from the totalŠ^@DrW(t)#2
‹N&Nc

/as
2 in those states.
-

red

re

n

e-
l

s
e

n

se
f

do
this

nificantly differing from an unaveraged MSD! until a good
number of particles execute hopping motion over and ab
the underlying background of a very slow dynamics, whi
is clearly the case here. This again suggests that a comp
tionally expensive~and presently intractable! way of averag-
ing over independently prepared sets of initial conditio
may be a better averaging procedure for nonergodic syste
On the other hand, it appears that sufficient averaging sm
out the interesting aspects of the MSD in the supercoo
liquid near the glassy state, distinguishing it from the liqu
to crystal transition. Our results suggest that the steps
MSD may be seen in laboratory experiments by digital vid
imaging of the particles in supercooled binary colloidal m
tures. The cooperative nature of these hops is confirmed
our detailed study of the van Hove self-correlation functio
and the individual particle displacements in the vicinity
the glass transition in Secs. III B and III D, respectively. W
further note that the reduction in the long-time value of t
MSD is sharp for the CT~curvesXh andXi in Figs. 1 and 2!
but gradual for the GT~in Figs. 3 and 4!.

The long-time saturation value of the MSD in the crys
~run Xk) and the glass~run Gk) is ;0.04as

2 . This gives a
value of the Lindemann ratioW[AŠ^@DpW (t)#2&N‹Nc

. This

can be compared withW50.19 and 0.23 obtained in the MD
simulations of Yukawa systems@35# and a monodisperse
colloidal suspension with size-corrected DLVO potent
@36#, respectively, andW50.2860.05 in the Monte Carlo
simulation of a polydisperse suspension@37#.

In Fig. 11, we have shown the semilogarithmic plots
the asymptotic diffusion constantD` @Eq. ~7!# for the CT
(f50.2), as a function of 1/T!. The values ofD` span over
more than four orders of magnitude in the range of tempe
tures shown. The data for the liquid at temperatures ab
the freezing temperature fit reasonably well to the Arrhen
law ~shown by lines in Fig. 11!, namely,

FIG. 10. The MSDŠ^@DrW2(t)#2&N2
‹Nc

/as
2 for heavier sublattice

versus time ~in sec! in a log-log plot for the runGd (T!

50.0416) and runGg (T!50.0313) atf50.3. The error bars rep
resent the average deviation of the individual particle MSD fro
the corresponding partial MSD.
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914 57SUBRATA SANYAL AND AJAY K. SOOD
Da
`5Aa exp@~2Ba /T!!#, ~9!

with the values ofAa and Ba given in Table II. The ratio
D1 /D2 fluctuates between 1.7 and 2.1 for the CT data. T
Arrhenius temperature dependence ofD` is similar to that of
the average relaxation times obtained for the density and
bond-orientational correlation functions of these states@21#.
By contrast, the temperature dependence of the averag
laxation times in the dense supercooled liquids near the
is non-Arrhenius@21#. Interestingly, there is an anomalou
increase in diffusion at temperatures very near to the CT w
respect to its value at the immediate higher temperature.
effect is seen in the MSD andD(t) plots not only for the CT
but also for the GT. This is also revealed in Fig. 12, whe
we plot the value ofŠ^@DrW(t)#2&N‹Nc

/as
2 at t51.05 sec for

both the volume fractions. It shows thatŠ^@DrW(t
51.05 sec)#2&N‹Nc

/as
2 reduces with cooling till some tem

peratureT1
! and then increases~i.e., the particles are mor

mobile! till some other temperatureT2
!,T1

!, beyond which it
again reduces nearly to zero at the lowest temperature.
call this effect a ‘‘three-stage freezing’’ and identify the i
termediate state betweenT1

!50.0407 ~run X f) and T2
!

50.0378~run Xh) for the CT andT1
!50.0313~run Gg) and

T2
!50.0302 ~run Gk) for the GT. The intermediate stag

could be the result of a constrained dynamics of more mo

FIG. 11. The natural logarithm of the totalD` and the partial
Da

` (a51 or 2) asymptotic diffusion constants~in units of as
2/sec!

as a function of inverse temperature 1/T! for f50.2. The solid
lines through the data points are the Arrhenius fits with the fitt
parameters given in Table II.

TABLE II. The optimal fitting parameters for the Arrhenius la

Da
`5Aae(2Ba /T!) for f50.2.

Species Aa ~in as
2/sec! Ba

Total 1.1823 2.7148
a51 1.1801 2.9456
a52 1.1864 2.4153
e

he

re-
T

h
is

e

e

le

lighter particles in the background of heavier particles and
a structural readjustment at the onset of a CT or a GT.

B. van Hove self-correlation function
and non-Gaussian parameter

In order to gain a clearer and more quantitative insig
into the temporal and spatial dependence of the sin
particle motion, we compute the self-part of the van Ho
density autocorrelation functions, namely,

Ga
s ~r ,t !5

1

Na
(
i 51

Na

^d„urW i
a~ t !2rW i

a~0!u2r …&. ~10!

The angular brackets denote an average over the in
times. The quantitySa(r ,t)54pr 2Ga

s (r ,t) gives the prob-
ability that a particle of typea, which was at the origin at
time t50, has moved a distancer in time t. Thed function
is discretized, so thatd(r )51 for 0,r<Dr and d(r )50,
otherwise. The choice of the bin widthDr does not affect the
results except for the obvious smoothing at large values
Dr . The value ofDr in our simulation is chosen to be one
thousandth of the box length. The functionSa(r ,t) is nor-
malized such that*0

`Sa(r ,t)dr51. This function has been
extensively studied in the simulations for charg
polydisperse colloidal suspensions@10#, r 212 soft-sphere al-
loys @17#, LJ mixtures@16#, molten salt@38#, methanol@39#,
etc.

The ‘‘Gaussian approximation’’ toGa
s (r ,t) is given by

@40,41#

Ga
s ~r ,t !5

1

~4pDa
`t !3/2

expS 2
r 2

4Da
`t

D , ~11!

g

FIG. 12. The totalŠ^@DrW(t51.05 sec)]2&N‹Nc
/as

2 ~circles! and

the partialŠ^@DrWa(t51.05 sec)]2&Na
‹Nc

/as
2 (a51, crosses;a52,

triangles! versusT! for ~a! f50.2 and~b! f50.3. The data are
shown for the eight lowest temperatures in both the cases.
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FIG. 13. The van Hove self-correlation func
tions for the lighter particles at five different tem
peratures@~a!–~e!# and at a few different times
for each temperature for the glass transition (f
50.3). In ~a! and ~b! the dashed line represen
the hydrodynamic limit.
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which is the Green function for the diffusion equation
three dimensions@41#,

dGa
s ~r ,t !

dt
5Da

`¹2Ga
s ~r ,t !, ~12!

subject to the boundary conditionGa
s (r ,0)5d(r ). When the

particles execute discrete hops, Eq.~11! is satisfied only for
times much larger than the hopping time. The validity of E
~11! can be simply tested by calculating the moments@40#

^urW i
a~ t !2rW i

a~0!un& t0
[E r nGa~r ,t !dr, ~13!

where the angular brackets indicate an average over al
particles of typea and the set of initial times$t0%. The MSD
of a particle of typea after a timet is given by the second
moment@i.e., n52 in Eq. ~13!# of Ga

s (rW,t). The Gaussian
approximation implies, for example, that the non-Gauss
parameter, defined by

aa~ t !5
3^urW i

a~ t !2rW i
a~0!u4&

5^urW i
a~ t !2rW i

a~0!u2&2
21, ~14!

would be identically equal to zero.
The locationr a

max of the maximum ofSa(r ,t) indicates
the most probable position of the particle at timet, given that
it was at the origin att50. In the hydrodynamic limit,
(r a

max)254Da
`t. The approach to the hydrodynamic lim

slows down with decreasing temperature. In a solid~glass or
crystal!, r a

max stabilizes after a short while to a time
.

he

n

independent finite valuer a
max5A^ua

2& whereua is the ther-
mal displacement of a particle of typea from its mean equi-
librium position.

1. Behavior of Sa(r ,t)

A few representative plots ofSa(r ,t) in the supercooled
liquid for the lighter particles are given in Fig. 13 forf50.3
and Fig. 14 forf50.2. To reveal the characteristic diffusiv
motion, we have shownSa(r ,t) at several different times fo
a few temperatures. The high temperature liquidlike beh
iors are similar for both the volume fractions, a typical e
ample of which is shown in Fig. 13~a!, for the runGb. The
function has a single peak, whose positionr a

max moves rap-
idly to larger r with time t and reasonably reproduces th
long-time hydrodynamic limit of Eq.~11!, shown by the
dashed line in Fig. 13~a!. For temperatures close to the s
percooled liquid or glass@Figs. 13~d! and 13~e!#, r a

max be-
come nearly independent of time, implying that the system
kinetically frozen. The area under the first peak redu
gradually to give rise to a second peak at the interpart
spacingr 5as , whose height increases with time, as can
seen from the magnified curves, in Figs. 13~d! and 13~e!. The
increment of the second peak at the cost of the first, eve
the lowest temperature case forf50.3, is a clear manifesta
tion of the slow relaxation of the quenched disordered sta
via activated jump processes. We reiterate that these mu
taking place cooperatively to get reflected in the statistica
average quantities like MSD andSa(r ,t). For a slightly su-
percooled liquid@e.g., the runGc in Fig. 13~b!#, the dynam-
ics at earlier times is essentially similar to that seen in F
13~a!, except for the fact that the overall motion has slow
down so that the hydrodynamic limit~shown by the dashed
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line! is not accessible even in the total simulation tim
(;1.2 sec!. The increment of a third peak is also apparent
the data fort51.02 sec. The crossover of the qualitati
nature of the single-particle motion, from diffusive to ho
dominated, allows a clear-cut estimation of the crosso
temperatureTc

!50.0356 ~run Ge). This is slightly higher
than the estimatedTc

!50.0325 from the mode-coupling
theory fits of the nonergodicity parameters@42#. This slight
(;9%) discrepancy is probably due to the fact that the v
Hove self-correlation functions do not take into account
the decay channels and hence are expected to overest
the transition temperatureTc

! . In the long-time hydrody-
namic limit @Eq. ~11!#, Sa(r ,t) scales withDa

`t. In Fig.
13~a!, we have compared theS1(r ,t50.003 sec! ~full circles!
and S1(r ,t50.015 sec! ~open circles! of the run Gc, both
scaled byD1

` , with S1(r ,t50.0012 sec! andS1(r ,t50.003
sec!, respectively, for the runGb ~solid lines!, showing that
this scaling property is valid far before the hydrodynam
limit is reached@17#.

The situation for the case of CT is quite different at low
temperatures. There is no indication of the growth of a s
ond or a third peak atas or 2as , respectively, demonstratin
that the hopping events are almost absent. This is confir
by the direct observation of the particle displacements, p
sented in Sec. III D. At the lowest temperature@run Xk in
Fig. 14~c!#, the system is kinetically arrested over the ent
simulation time, as can be seen from complete overlap of
curves calculated for the timest50.0035 and 1.19 sec.

There are two anomalous features to be noted@25#. ~i!
Figure 13~c! shows an increase of the first peak height a
later time (t51.02 sec! ~at the cost of the second peak!, after
the conventional decrease at somewhat earlier timet
50.306 sec!. This clearly indicates that some particles mu
be hopping back very much cooperatively to their origin

FIG. 14. The van Hove self-correlation functions for the ligh
particles at three different temperatures@~a!–~c!# and at a few dif-
ferent times for each temperature for the crystal transitionf
50.2). In ~a! and ~b! the dashed line represents the hydrodynam
limit.
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positions, as confirmed in Sec. III D.~ii ! A comparison be-
tween the first-peak heights at later times in panels~c! and
~d! of Fig. 13 and also in panels~a! and~b! of Fig. 14 shows
unambiguously that the system at a certain low tempera
~run G j for f50.3 and runXh for f50.2) is less rigid than
at a slightly higher temperature~run Gg for f50.3 and run
X f for f50.2). This is a manifestation of the three-sta
freezing, noted earlier in this paper. A detailed analysis
the microscopic single-particle motion in a latter subsect
has led us to the qualitative understanding of how it h
taken place prior to both the GT and the CT.

In Figs. 15~a! and 15~b!, (r a
max)2 is shown for the lighter

and heavier species, respectively, as a function of temp
ture for various times. Since the identification of a peak
Sa(r ,t) is difficult at long times for higher temperatures, th
quantity is extracted only at the intermediate and low te
peratures. We have checked that atT!.0.0530 forf50.2
andT!.0.0550 forf50.3, the results approximately follow
the expected (r a

max)254Dat behavior. The results seem to in
dicate that atT!50.0307~runGg), the heavier sublattice go
completely frozen in the time scale of our simulation. Belo
this temperature, the problem essentially boils down to t
of a constrained dynamics of the lighter particles in the n
work of the heavier particles.

In the solid phase,r a
max can be identified withA^ua

2& ~de-
fined before! and hence the ‘‘Lindemann ratio’’La

5A^ua
2&/da can be determined. Hereda denotes the mean

interparticle spacing for the speciesa and can be taken as th
first peak position of the corresponding partial PDF,gaa(r ).
Table III gives the values ofLa (a51,2) for the statesG j
and Gk with f50.3 andXk with f50.2. As can be seen
the values are lower for the heavier particles. Also, th
numbers are comparable for the glass and the crystal.

2. Non-Gaussian parameter aa(t)

Figure 16 shows the non-Gaussian parameter,aa(t), de-
fined in Eq.~14!, as the temperature of the liquid is lowere
to obtain either a crystal@panels~a! and~b!# or a glass@pan-
els~c! and~d!#. As stated earlier, after a duration of the ord
of inverse phonon frequency, this function tends to zero
liquids where the self-diffusion follows the usual Fickia
diffusion process. Our results for the highest temperature
uids ~shown only for the runX0) do show this@30,40,43,44#
with a maximum deviation of about 5% for the heavier pa
ticles @Fig. 16~b!# and 15% for the lighter ones@Fig. 16~a!#.
The system becomes increasingly non-Gaussian in natur
it is cooled down to a state pointX f , and then retrieves the
Gaussian character as it is further cooled to crystallize. T
parameteraa(t) for the bcc crystal~run Xk) obtained in our
simulation shows a deviation of about 20% from zero
both the species, suggesting its anharmonicity to that ext

The non-Gaussian parameter quite successfully underl
the importance of the activated processes near the GT@45#.
The use of its infinite-time value, satisfyingaa(t→`)50
for T.Tg while aa(t→`)Þ0 for T,Tg , as a suitable can
didate for the order parameter was suggested by Miyag
and co-workers@44,46#. The maximum of the non-Gaussia
parameter is also suggested to be a useful parameter to d
the glass transition point in a recent trapping diffusion the
@45#. Our BD results onaa(t) for the GT, as presented in

c
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57 917RELAXATION DYNAMICS IN DENSE BINARY . . .
Figs. 16~c! and 16~d!, are interesting. The maximum value
aa(t) increases dramatically with cooling down to the sta
point Ge and then decreases till the state pointGg, after
which it again increases in the stateG j . Compared to those
for f50.2 in panels~a! and ~b!, the maxima inaa(t) in
panels~c! and~d! are unusually high before the glass tran
tion has taken place, implying a significant enhancemen
the activated mechanisms~such as correlated jumps! in liq-
uids near the glassy regime. A quantitative comparison of
peak height ofaa(t) shows that the systems investigat
here in the states near the GT are much more non-Gaus
than those reported in earlier simulations@30,40,43,44#. In
the runGg, aa(t) clearly feature the cooperative to and f
hop motions associated with both the species in the t
interval between 0.2 and 0.5 sec and also the coopera
hops mostly of the lighter particles~type 1) for t>0.7 sec.
These motions will be much more clearly revealed from o
analysis of tagged-particle motion in Sec. III D. Figur
16~c! and 16~d! also indicate that the heavier sublattice h
formed a glass at this temperature but not the lighter ones
noted earlier in this paper.

C. van Hove distinct-correlation function

In order to study the collective dynamics of the syste
we have investigated the temporal evolution of the disti
part of the van Hove density autocorrelation function:

Gab
d ~r ,t !5

1

ANaNb
(
i 51

Na

(
j 51

Nb

8 ^d„rW2rW i
a~0!1rW j

b~ t !…&.

~15!

The prime on the summation indicatesj Þ i . Gab
d (r ,t) speci-

fies the probability distribution to find a particle at a distan
r from the origin after a timet, provided another particle wa
at the origin att50. At t50, Gab

d (r ,t) is identically equal to
its static counterpartgab(r ). In a liquid Gab

d (r ,t) relaxes
rapidly and reaches a value 1 at long times. As the temp
ture is lowered towards the GT this rapid decay slows do
and ‘‘frozen-in’’ structure persists even at extremely lo
times. In Figs. 17~a!–17~d!, we have shownGaa

d (r ,t) at four
different temperatures and at each temperature for var
times to picture the collective dynamics near the GT in
system withf50.3. The initial static structure is almos
completely relaxed by aboutt50.816 sec for the state poin
Gb in panel~a!, in contrast to the state pointGk in panel~d!
where the final glassy structure is attained as early at
50.003 sec. For the runGd @Figs. 18~a! and 18~b!#, after an
initial rapid decay corresponding to the vibration in a ca
and theb relaxation steps in its corresponding density c
relation functionFa

s (q,t) @23# in q space,Gab
d (r ,t) stabi-

lizes during 0.05 sec<t<0.3 sec corresponding to the pla
teau inFa

s (q,t). Beyond this time, a much slower third-stag
relaxation implying the beginning ofa relaxation is also
apparent in Fig. 18~b!.

As we have seen above, the difference of the plat
value ofGab

d (r ,t) from the initialgab(r ) is a combination of
a fast relaxation andb relaxation. We also note that thi
difference is discernible primarily in the first neighbor sh
(r /as,1.2) as seen in Fig. 18 and in otherGab

d (r ,t) @23#.
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This clearly supports the picture thatb relaxation is a local-
ized process involving only a few nearest neighbors@47#.

We have studied the decay ofGab
d (r ,t) to its plateau

value in the run Gd@Figs. 18~a! and 18~b! for G11
d (r ,t)# by

monitoring the difference@Gab
d (r ,t)2Gab

d (r ,t50.3 sec!# as
a function oft. This quantity indeed follows a factorizatio
of the type predicted by the mode-coupling theory in theb
relaxation regime, namely,

@Gd~r ,t !2Gd~r ,t50.3 sec!#5H~r !@ f ~ t !2 f ~0.3 sec!#,
~16!

where we have dropped the pair indicesab. The function
H(r ) is shown in Fig. 19 for various times. One can no
small differences inH(r ) corresponding to different time
below r /as,0.5.

D. Investigation on tagged-particle motion

In a dense supercooled liquid or an amorphous solid, a
from the vibrational motion around the local potential min
mum position, the particles can execute jump motion
tween the neighboring equilibrium positions. It is easier
trace out such motions in a supercooled liquid near GT,
cause, in general, the particles are much more localized c
pared to that in a liquid. In this subsection, we character

FIG. 15. The square of the location of the first maximumr a
max

~in units of as) of Ga
s (r ,t) is shown at several different times an

different temperatures for the case of glass transition (f50.3). ~a!
The lighter (a51) and~b! the heavier (a52) particles.

TABLE III. The Lindemann ratioLa5^ua
2&1/2/da for the spe-

ciesa in the glassy (f50.3) and the crystalline (f50.2) states.

State Run T! L1 L2

Glass Gj 0.0302 0.1608 0.1067

Gk 0.0300 0.1378 0.0933

Crystal Xk 0.0369 0.1684 0.0933
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the single-particle motion at the state pointsGg, G j , andGk
for f50.3 andX f and Xh for f50.2. This study is moti-
vated by the following facts. First, for the supercooled liqu
close to GT, the presence of a staircase profile in its MSD
long times and a second peak inGa

s (r ,t) indicate the break-
down of usual Fickian diffusion implying that the hop m
tion must be prevailing in these states. Since both of th
quantities are statistically averaged, these directly point
towards the cooperativeness of the hop motion. Interestin
in the run Gg ~see Fig. 22!, these quantities indicate tha
quite a few particles have simultaneously hopped by ab
an interparticle separationas , stayed in the new position fo
a very long time compared to the time of vibration in a ca
and then have hopped back cooperatively to their respec
original positions. Second, the unusually high value ofaa
near the GT indicates that a cause for the higher mobility
the particles at lower temperatures~three-stage freezing!
could be due to an increasing number of hopping eve
taking place starting from the temperature at which
heavier sublattice freezes first. Finally, the presence of
and hop-back events in the tagged-particle motion at t
peratures nearTg

! for different systems can specify some so
of a universality in the occurrence of such a behavior v
close to the GT.

In order to quantify the tagged-particle motion, we ha
studied the displacement of each particle over the en
simulation run with respect to its initial position, i.e.,

dr i~ t ![urW i~ t !2rW i~0!u. ~17!

If the particle i , after executing local vibrations up to som
time t5t1 makes a jump of the order ofas , then dr i(t)
would remain small (;0.1as) for t,t1 and att>t1 would
suddenly increase to a value;as , thereby clearly distin-
guishing the jump-type motion. To have a precise idea ab
the direction of these jumps, one requires use of the o
two polar coordinates, namely,du i(t) anddf i(t).

FIG. 16. The non-Gaussian parameteraa(t) (a51 and 2) at
different temperatures.~a! and ~b!: f50.2; ~c! and ~d!: f50.3.
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In Table IV, we have accumulated the number of partic
having their maximum displacementdr i

max[max@dr i(t)#
over the entire period of simulation into three categori
namely, I: dr i

max,0.75as , II: 0.75as<dr i
max<as, and III:

dr i
max.as. The particles belonging to classes II and III co

tribute mainly to the diffusion while those in class I contri
ute to the average properties of the system.

1. Supercooled liquid (f50.2)

Table IV shows that there are 373 particles in class III
the runXh (T!50.0378) making this state point more liq
uidlike compared to a higher temperature runX f (T!

50.0407) where the number of class III particles are o
261. This suggests that significant configurational readju
ment has taken place in the runXh ~for which T!.Tf

!) to
favor the crystallization. The results for the time depende
of the displacementsdr i(t) of a few representative particle
for runs X f and Xh are shown in Figs. 20 and 21, respe
tively. The curves from top to bottom representdr i(t) of the
particles in order of decreasingdr i

max and they are shifted by
some multiple ofas from each other for clarity. The panel
marked 2 are the results for the heavier~type 2) particles and
the rest are for the lighter ones. These figures do show
presence of a very few jump events, which were not disce
ible in the corresponding van Hove self-correlation fun
tions. The jumps are ‘‘smoother’’~i.e., the flight time is
much more than the typical vibrational period! in run Xh
than in runX f . When compared to Figs. 22–24, we see th
the particle motion before the CT is much smoother a
hence diffusive than the relatively hindered hop-trap mot
of the particles in the GT case~which we discuss in the nex
paragraph!.

2. Supercooled liquid-glass (f50.3)

Figures 22, 23, and 24 presentdr i(t) for the runsGg, G j ,
andGk, respectively. We clearly see that four types of p

FIG. 17. Gab
d (r ,t) versusr /as for four different temperature

runs in~a!–~d! at f50.3. The timet from the top to bottom in each
panel corresponds to the curves with decreasing height of the
mary maximum.
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57 919RELAXATION DYNAMICS IN DENSE BINARY . . .
ticle motions are present, namely,~A! vibrations around the
local potential minimum,~B! hopping of the order ofas to a
neighboring equilibrium position and persisting there till t
end of the simulation run,~C! transient vibrations, i.e., hop
ping by ;as to a new position, staying there for a sho
while @to a maximum of ten times the time scale of moti
~A!# and then hopping back to its original position and~D!
motion similar to~C! but time of residence in the hoppe
position being quite high@more than 100 times the time sca
of ~A!#. In the glassy state~run Gk, Fig. 24!, the hop-back
motion of type ~D! is altogether absent, and the transie
vibrations~C! are not very frequent, showing that the majo
ity of particles perform small amplitude vibrational motio
This is also indicated by the fact that about 95% of t
particles belong to class I in Table IV. For the runsGg ~Fig.
22! and G j ~Fig. 23!, all the four types of motion are ver
frequent. A comparison of the numbers of class III partic
between these two states from Table IV may not reflect
higher mobility in the lower temperature state pointG j , but
a closer look into the single-particle dynamics shows tha
the runG j , there are ten particles which moved>1.4as con-
tributing largely to the diffusion, compared to only five o
them inGg. Most jumps in the runGg are sharp, with the
flight time being less than 0.003 sec. This is in contrast to
case in runG j , where the flight times are typically muc
more than 0.003 sec and thereby contributing towards
increased diffusion or the three-stage freezing. Though th
are a few particles at this temperature executing jumps
occasionally jump-back motions almost together, a care
comparison shows that the overall cooperativeness in par
motion is much less than that seen in the runGg. Any fluc-
tuation of one particle inGg is very strongly correlated with
a few other particles and hence show up in the statistic
averaged quantities too. The reasons for which the runGg
has been continued for double the time compared to the o
runs in the series~refer to Table I! are at least twofold, first

FIG. 18. Gab
d (r ,t) versusr /as for the run Gd (T!50.0416) at

f50.3. The timet from the top to bottom in~a! and ~b! corre-
sponds to the curves with decreasing height of the primary m
mum.
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to show that the jump-type motions are very frequent a
their cooperativeness indeed is a property of the system
this temperature and secondly, to improve upon the statis
for the calculations of the MSD and van Hove functions. W
note that even at this temperature, where most of the
ticles are localized to their respective local equilibrium po
tions, a few of them have executed jump motion of type~D!
cooperatively at the similar times. In particular, we have f
lowed the movement of seven particles, which simul
neously executed hop movements with 0.90as,dr i

max

,1.15as at t'0.3 sec and after persisting in the new positi
for up to t'0.48 sec, have hopped back to their respect
initial positions. This has been done to check if they perm
their positions to show a rotation or caterpillar motion whi
is different than hole-induced jumps. These sorts of part
motion near the GT have been identified in earlier MD sim
lations of soft-sphere binary mixtures interacting viar 212

potential @46,16#. We have named these particlesA–G, in
descending magnitude of their maximum movement in
total duration of the runGg ~Fig. 22!. The averaging of
coordinates is performed over all the BD steps as follows:~i!
before the hop, betweent50 and t50.24 sec;~ii ! at the
hopped position, betweent50.3 sec andt50.48 sec; and
~iii ! after the return, betweent50.54 sec andt50.66 sec.
The averaged coordinates thus available for these seven
ticles at times~i! and ~iii ! overlap almost identically and
hence when plotted in Fig. 25, we can often see only t
points corresponding to the initial~markedA–E) and the
hopped positions~markedA8–E8). By calculating the inter-
particle distances among these particles in their initial a
hopped positions, we have categorized them into th
groups:~1! E
G, ~2! A
D
B
C, and~3! F. From Figs.
22 and 25, we see that at aroundt50.3 sec, in group~1!, the
particleG hops to some positionG8, leaving a vacancy be
hind whereE hops in. During the same time, in group~2!, A
hops toD, D to B, and B to C in a sequential chainlike
motion. The group~3! particleF makes a hop to a neighbor

i-

FIG. 19. The functionH(r ) for the runGd (T!50.0416) atf
50.3. The curves from the top to bottom are fort50.204, 0.003,
0.03, 0.06, and 0.102 sec.
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920 57SUBRATA SANYAL AND AJAY K. SOOD
ing positionF8 during this time. These particles stay at the
hopped position betweent50.3 sec and 0.48 sec. Beyon
this time, surprisingly enough, they almost simultaneou
hop back to their respective original positions and per
there. As stated earlier in this paper, the flight time of th
hop or hop-back motions are;0.003 sec and the residenc
time ;0.2 sec. The initial state and the configuration af
the cooperative and interconnected hop can perhaps
viewed as two states of the ‘‘two-level’’ system conjectur
to occur in the glassy regime.

We have noted above that the cooperative hop-back
tion is present for at least two different runs with temperat
very close toTg

! and f50.3. In Fig. 26, we present th
results of a similar analysis ofdr i(t) on a system with simi-
lar parameters but withN5256 particles. An initial bcc lat-
tice is melted withni55npZ̄ and the resultant liquid con
figuration is further cooled toni50.1npZ̄ in one step. The
effective temperature of the system isT!50.0360 which is

FIG. 20. The functiondr i(t) ~in units of as) from the top to
bottom for a few representative particles in the runX f (f50.2,
T!50.0407) in order of decreasingdr i

max. The curves are shifted
vertically by some multiples ofas from each other for the clarity o
presentation. The panels marked 2 representdr i(t) for the heavier
particles and the rest are for the lighter particles.

TABLE IV. The number of particles with maximum displace
ments dr i

max in different spatial intervals defined by I:dr i
max

,0.75as ; II: 0.75as<dr i
max<as ; III: dr i

max.as . The displacements
are measured with respect to the location of the particles at
beginning of the corresponding simulation run.

State Run T! I II III

Glass Gg 0.0313 373 30 29
G j 0.0302 385 23 24
Gk 0.0300 408 12 12

Crystal X f 0.0407 83 88 261

Xh 0.0378 13 46 373
y
t
e

r
be

o-
e

very close to its GT temperature. The curvesdr i(t) in Fig.
26, plotted in a similar manner as before, clearly reveals
presence of strongly cooperative hop and hop-back motio
at least two different time intervals, namely,t;0.45 sec to
;0.55 sec andt;1.0 sec to;1.1 sec. The presence of co
operative hop-back motion for three different phase poi
close to the GT temperature@namely, the runsGg (T!

50.0313) andG j (T!50.0302) for one system and atT!

50.0360 for an altogether differently prepared system# and
also in a recent work@48# support the universality of such a
occurrence.

IV. SUMMARY AND CONCLUSIONS

In this paper we have reported the Brownian dynam
simulation results on the dynamical properties for binary p

FIG. 21. Same as in Fig. 20, but for the runXh (f50.2, T!

50.0378).

FIG. 22. Same as in Fig. 21, but for the runGg (f50.3, T!

50.0313). Seven particles executing to and fro hop motions~refer
to Fig. 25! are markedA–G.

e
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lyball mixtures interacting via the DLVO potential, as the
are cooled towards a crystal or a glass formation. Our m
results and conclusions are as follows.

~1! The relaxation scenarios are completely different a
moderately cooled colloidal liquid is further cooled to sho
a crystal transition forf50.2 or a glass transition forf
50.3. The temporal evolution of the mean-squared displa
ment shows deviation from the usual Fickian diffusion in t
intermediate time scale forT!,0.0530 forf50.2 andT!

,0.0550 for f50.3, and follows subdiffusive behavio
MSD }tm with m,1. The temporal span of this subdiffusiv
regime increases with reducing temperature as well as
increasingf. In addition, in the long-time regime, the MSD
for the supercooled liquid withf50.3 shows a staircas
profile indicating strongly cooperative jump motion prese
in these states.

FIG. 23. Same as in Fig. 22, but for the runG j (f50.3, T!

50.0302).

FIG. 24. Same as in Fig. 23, but for the runGk (f50.3, T!

50.0300).
in

a

e-

th

t

~2! The shift of r a
max and the broadening ofGa

s (r ,t) with
time at high temperatures, to reach the hydrodynamic lim
follow the behavior expected in the liquid states. We ha
shown that the scaling, given by Eq.~11!, starts holding good
even at the initial times far before the approach to hydro
namic limit (t→`) for the temperatures where th
asymptotic valueDa

` is reached. This is in agreement with a
earlier work on binary model alloy withr 212 pair interaction
@17#.

~3! As a supercooled liquid is cooled towards the gla
transition, a second peak and at times a third peak inGa

s (r ,t)
at the first and the second nearest-neighbor positions, res
tively, evolve in time, at the expense of the area under
first peak. This clearly shows that the particles execute a
vated jump motions rendering the system extremely n
Gaussian as characterized in terms of the non-Gaussian
rameters aa(t). The importance of this parameter i
quantifying the GT temperature has been stressed in the

FIG. 25. The averaged coordinates for the seven particlesA–G
of Fig. 22. OnlyA andG are heavier particles~type 2). The dimen-
sions ofX andY denote sides of the simulation box in units ofas .

FIG. 26. Same as Fig. 24 but for a state (f50.3, T!50.0360,
N5256) arrived at via one-step quench~refer to text!.
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erature@45#. The strong cooperative behavior of these h
motions near the GT (f50.3) makesaa(t) much larger than
that near the crystal transition (f50.2), where the hop mo
tions are rare.

~4! The gradual slowing down of the collective dynamic
as probed byGab

d (r ,t), shows the presence of two tim
scales usually associated with thea and b relaxations pre-
dicted by the mode-coupling theory for an ideal glass tran
tion. In theb relaxation regime, the difference ofGab

d (r ,t)
from its plateau value obeys a factorization property as
the prediction of the theory.

~5! There exists an intermediate temperature range
which the system is more mobile~liquidlike! than at its im-
mediate higher temperature~three-stage freezing!, implying
significant structural adjustments. This happens for bothf
50.2 andf50.3 and its implications are present in all th
dynamical quantities calculated.

~6! A significant result of our simulation is that at a tem
perature (T!50.0313, runGk) very near to the GT (Tg

!

50.0312),Ga
s (r ,t) shows an increase of the first peak heig

at some later time~at the cost of the second peak!. This
clearly indicates that a few particles must be hopping bac
their original positions from their respective hopped po
tions. The individual trajectories and displacements of
particles have been followed to find that about 2% of
particles show an interconnected cooperative hop mo
with maximum displacements lying between 0.90as and
1.15as at t;0.3 sec, persist at the hopped position for a
other 0.2 sec, and then again almost simultaneously hop
to their respective initial positions. A maximum of 10%
D.

G

y

.

-

.

p

,

i-

r

at

t

to
-
e
e
n

-
ck

the particles show marked cooperative hindrance in their m
tion during this time, such that the effect shows up in t
statistically averaged quantities: the MSD,Ga

s (r ,t), and
aa(t). This behavior is seen in two more systems very n
to the GT. The existence of cooperative hopping motion
been pointed out earlier in the MD simulations of either
verse 12-power binary supercooled liquids near the
@46,16# or a 6-12 LJ glass@49#, but there is no example of th
cooperative hop-back motion in literature. To the best of o
knowledge, there exists only one experimental evidence@50#
of strongly cooperative motion during the structural rela
ation of a metallic glass. This was seen by measuring
isotope effect of60Co diffusion in the Co76.7Fe2Nb14.3B 7
glass, by radiotracer technique. These results indicate the
portance of a careful analysis of the glass transition d
using the extended version of MCT which incorporates
activated hopping processes@13,14#.
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